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INTRODUCTION 
 

hen you look up at satellites passing through your early evening (or early 
morning) sky, do you ever wonder how far away they are from you? You can 
determine the orbit height of a low Earth orbiting (LEO) artificial satellite by 

using the satellite’s apparent travel when the satellite appears to be near your local zenith. 
Using the determined orbit height, you can also determine the approximate orbit period of 
the satellite. 

W
 This method takes advantage of the fact that the satellite’s true velocity can be 
seen when it is nearly overhead, i.e. near your local zenith. 
 
 

PRELIMINARY 
 

 When you stand near a highway and look at the cars passing by, do you ever 
notice that when a car is far away (in either direction), it does not appear to move very 
fast? Do you also notice that a car seems to move fastest when it is closest and just 
passing you? What you are experiencing is a simple example of vectors. When a car is far 
away, its velocity vector is directed nearly toward (or away from) you, so you cannot see 
a lot of motion. When a car is at its closest and just passing you, its velocity vector is 
exactly perpendicular to your line of sight, so what you see is the true velocity of the car 
and its fastest apparent motion.  

Imagine a car traveling down a highway at a constant velocity v, and a person is 
observing that car’s travel. Figure 1 illustrates what the velocity vector is doing in this 
scenario. 

 
 
 



 
Figure 1: An observer sees a car traveling on a highway. When the car is far from the observer, its velocity

v is mainly pointed along the observer’s line of sight, and therefore appears to move more 
slowly. When the car is closest to the observer, its velocity is perpendicular to the observer’s 
line  of sight, and therefore seen to move at its fastest rate and its true velocity. 
 

 
 Another phenomenon that is very familiar to any traveler is the effect of the closer 
objects seeming to move faster than the farther objects. When driving in a car, the closer 
street signs seem to whiz by, yet distant trees seem to saunter by, as if they are in no 
particular hurry. 
 Now, imagine our highway observer placed near another highway that is parallel 
to several highways further away from him/her, as illustrated in Figure 2. There is one car 
on each highway, each traveling at the same velocity, and traveling parallel to their 
adjacent cars. The observer will see the car on the closest highway pass by the fastest; the 
next closest highway car will seem to pass by a little slower, etc., until the car on the 
furthest highway is seen to travel the slowest.  
 



 
 

Figure 2: An observer is watching four cars traveling at the same velocity on four different highways, each 
at a different distance than him/her. The cars are observed to travel from position 1 to position 2, 
passing by the observer. The car on highway 1 will seem to pass by the fastest, while the car on 
highway 4 will seem to pass by the slowest. Note the angles that are created by the cars as they 
travel. The angle at highway 1 is the largest, while the angle at highway 4 is the smallest.  

 
 
 What exactly is going on when the observer sees this? You would think that all 
four cars would be seen to pass by with the same velocity. Why then does the farthest car 
seem to pass by more slowly than the closest car? 
 The further cars in fact do travel more slowly than the closer ones, but not in 
velocity. Remember that the velocities of all four cars are all the same. Here is where a 
new concept is introduced. Angular velocity is the apparent angle traveled in a specific 
amount of time, normally expressed in degrees per second or radians per second. Radians 
are simply the number of degrees multiplied by π/180o. The velocity that many are 
familiar with is measured in kilometers per second, but that is actually the linear velocity. 
Equation 1 states the relationship between linear velocity and angular velocity. 
 

  ω = 
r
v           Eq. 1 

 
where  ω = the apparent angular velocity (in radians/sec); 
  v = the linear velocity; and 
  r = the distance from the observer to the moving object. 
 



 As the distance (r) increases, the apparent angular velocity (ω) decreases, for 
some linear velocity (v). This is what causes the more distant cars to appear to move 
more slowly than the closer cars. 
 Watching a low Earth orbit satellite pass by in your evening sky is no different 
than looking at a car on the highway, except that the satellite highway is much further 
away and traces a very large circular (or nearly circular) road. The satellite analogy to the 
highway of Figure 1 is shown in Figure 3. The satellite analogy to the multiple highway 
concept of Figure 2 is shown in Figure 4. 
 

 
Figure 3: The satellite equivalent of the highway analogy in Figure 1. When the satellite is further from the 

observer, a large part of its velocity is pointed at or away from the observer, thus causing the 
satellite to appear to travel more slowly in the observer’s sky. As the satellite appears closer to 
the zenith (and decreasing in distance), the satellite appears to travel much faster, as the velocity 
becomes increasingly perpendicular to the observer’s line of sight. For a LEO satellite, the 
linear velocity (v) is approximately constant within its respective orbit. 

 
 

 
Figure 4: Four satellites in four different orbits seen by an observer. In all four cases, each satellite crosses

the observer’s zenith. Unlike the example in Figure 2, the satellites will not have the same linear
velocity because of their four different orbit heights. As a result, the observed angular velocities 
will depend on both the satellites’ distances from the observer and the satellites’ linear 
velocities, as stated in Equation 1. 
 



THEORY 
 
 Now, imagine the observer at point P on the Earth observing a satellite S 
appearing near his/her zenith, as illustrated in Figure 5. The observer notes the apparent 
position of the satellite in his/her sky at two specific times. 
 
 

 
Figure 5: An observer at point P sees a satellite S passing near his/her local zenith. He/she measures the

 apparent angle the satellite travels θp, and divides it by the elapsed time Δt to determine the
 apparent angular velocity ωp. The angles have been exaggerated to better show the labels. 

 
 
 Once the observer measures the angle traveled (θp) in a specific time duration 
(Δt), the apparent angular velocity (ωp) can be determined using Equation 2. 
 

 ωp = 
t
p

Δ
θ          Eq. 2 

 
where  ωp = the angular velocity of the satellite seen by the observer at P; 
  θp = the angle the satellite is observed to travel as seen at point P; and 
  Δt = the elapsed time the satellite is seen to travel the angle θp. 
 
 The satellite’s linear velocity (v) is the same with respect to both the observer 
(point P) and the center of the Earth (point C). This is exactly the same concept described 
in Figure 2. 
 



 v = ωph         Eq. 3 
 
where  v = the linear velocity of the satellite; 
  ωp = the apparent angular velocity of the satellite (in radians); and 
  h = the height of the satellite above the Earth’s surface. 
   

The height of the satellite (h) is the variable that needs to be solved. The distance 
from the center of the Earth to the satellite (rcs) is also dependent on the satellite’s linear 
velocity v through Kepler’s Third Law of Orbital Mechanics. Equation 4 simply states 
that the centripetal force acting on the satellite is equal to the gravitational force that the 
Earth exerts on it. This equation is always true for a perfectly circular orbit. 
 

 
cs

2

r
mv  = 2

csr
GMm          Eq. 4 

 
where  m = the satellite’s mass; 
  G = the Gravitational Constant; 
  M = the Earth’s mass; and 

rcs = the distance from the center of the Earth to the satellite. 
 
 Simplifying Equation 4 leads to Equation 5. 
 

 v2 = 
csr

GM
         Eq. 5 

 
Combining Equation 3 and Equation 5 gives us Equation 6. 

 

 v2 = 
csr

GM  = ωp
2h2        Eq. 6 

 
so that: 

 

ωp
2h2 = 

csr
GM

         Eq. 7 

 
The distance rcs is not known. Since the satellite is near the observer’s zenith 

however, we can take advantage of the fact that a line drawn from the center of the Earth 
(C) to the satellite (S) is nearly co-located with the line drawn from the observer (P) to 
the satellite. This is illustrated in Figure 6.  

 
 



 
Figure 6: When observed at zenith, a satellite’s distance from an observer P and its height above the 

Earth’s surface are identical. At zenith, the distance of the satellite from the Earth’s center C is 
the addition of the orbit height and the Earth’s radius at the point P. 

 
 
When the satellite is observed very near the local zenith, its distance from the 

observer and its height above the Earth’s surface are nearly identical. Therefore, the 
relationship described in Equation 8 can be used. 

 
rcs = rcp + h         Eq. 8 
 

where  rcp = the distance from the center of the Earth to the observer. 
 
Substituting for rcs using Equation 8: 
 

ωp
2h2 = 

)hr(
GM

cp +
        Eq. 9 

 
So that: 
 
ωp

2h2rcp + ωp
2h3 - GM = 0       Eq. 10 

 
Finally, 
 

h3 + rcph2 - 2
p

GM
ω

 = 0        Eq. 11 

 
Equation 11 is known as a cubic equation and as a consequence the satellite orbit 

height (h) will have three unique solutions. Two of the three solutions will be gibberish 
(which is slang for “not physically possible”), and therefore can be ignored. The solution 
that is left should be the correct and physically possible one. 

Solving a cubic equation from scratch is not fun. If you thought the Quadratic 
Formula (that messy equation you learned, or at least tried to learn, in high school) was 



bad, the Cubic Formula is even worse. Fortunately, the Internet has cubic equation 
solvers that automatically determine the solutions for you. See the References section to 
see the one that I used for this article. The coefficients for Equation 11 are: 

 
A = 1; 
B = rcp; 
C = 0; and 
D = -GM / ωp

2

 
When plugging in these values, make sure that the units are correct. For rcp, I use 

kilometers, for G, km3 / kg.s2, and for M, kilograms, so that I get kilometers for the 
answer’s units. Don’t forget the negative sign for the D coefficient either, or all three 
solutions will be gibberish! 

 
 

PRACTICAL EXAMPLES 
 

 This would be the end of the article, except we need to test out theories using 
actual data before they can be taken as correct. For this reason, I set up my CCD camera, 
very much as illustrated in Figure 7, to capture satellites traveling through my local 
zenith. I used three different sites; Ottawa, Kemptville, and Brockville. 
 
 On the evening of February 11, 2006, I set up my CCD camera in Ottawa, fitted 
with a 50mm lens to point directly at my local zenith, as shown in Figure 7. 
 
 

 
Figure 7: My ST-9XE CCD camera mounted on a simple tripod. The CCD camera was fitted with a 50mm

lens and pointed at my local zenith with the aid of a simple bubble level. It caught LEO 
satellites as it continuously took images of the zenith with an 11.2 by 11.2 degree field of view. 

 
 



From 7 p.m. to 9 p.m. E.S.T., February 11, 2006, the camera continuously 
captured 5 second exposures of my local zenith (yes, the sky was clear). I used the same 
method on May 27 and May 29, 2006, but using 10 second exposures. About 3000 
images were collected in total. I sifted through these images, 20 images at a time, using 
blink comparator software to check for satellite streaks. I found 26 usable satellite streaks 
of differing lengths, and therefore differing heights. I used 2 of the 26 images as 
examples here, shown in Figure 8 and Figure 9. 

 
 

EXAMPLE 1: SL-3 ROCKET BODY (#13771) 
 

 
Figure 8: An image of a Russian SL-3 rocket body (#13771) that was captured by my ST-9XE’s CCD

camera pointed at my local zenith at 23:48:45 U.T.C. on February 11, 2006. The location of my
local zenith at that time is denoted by the large red cross. The image FOV is about 11.2 by 11.2 
degrees. North is at top, East is at left. The exposure time was 5 seconds. 
 
 

I used the original image depicted in Figure 8 to determine the image scale of all 
images taken with the camera and the 50mm lens for future reference. I used 15 stars 
scattered throughout the image and plotted actual angular separation (in arc-minutes) 
between the stars vs. the pixel separation (in pixels) on the image for all combinations of 
two stars. I used a polynomial curve fitting technique to find the most accurate equation 
for the resultant graph. To make a long story short, the resultant image scale equation is 
stated in Equation 12. 

 
θp = (-3 x 10-8) λ3 + (3 x 10-5) λ2 + 1.3154 λ + 0.2783   Eq. 12 
 

where  θp = angular separation between stars (in arc-minutes); and 
  λ = the pixel separation between stars (in pixels). 

 



Figure 8’s streak length was measured to be about 165 pixels. Using Equation 12, 
this streak length corresponded to an angle of 3.63 degrees, or 0.0634 radians. The 
exposure time was 5 seconds, which made the measured apparent angular velocity of the 
satellite 0.01267 radians per second. 
 

For this example, the coefficients of Equation 11 were determined to be: 
 

A = 1; 
B = 6367.313 km; 
C = 0; and 
D = -2.481602 x 109

 km3. 
 
 The value of rcp (the B coefficient) was taken from my April 2005 JRASC article 
concerning the determination of the range of a satellite using a trigonometric parallax 
technique. See the References section for more information. 
 
 For this example, the three solutions to Equation 11 using the coefficients above 
were: 
 
1)  597 km; 
2) -6305 km; and 
3) -659 km. 
 

Solutions 2 and 3 are physically impossible, since they imply that the satellite 
orbited beneath the Earth’s surface. Solution 1 implied that the satellite orbited above the 
Earth’s surface at a height of about 597 km, which is definitely possible for a LEO 
satellite. 



EXAMPLE 2: MONITOR-E/SL-19 (#27840) 
 

 
Figure 9: An image of a Russian Monitor-E/SL-19 satellite (#27840) captured at 00:15:16 U.T.C. February 

12, 2006. The exposure time was 5 seconds, the same as in Example 1. The streak in this image 
is shorter than the one in Figure 4, implying that this satellite’s orbit height is larger than 
597km.  

 
 

The streak length in this image was measured to be about 123 pixels, which 
corresponded to an angle of 2.7 degrees, or 0.0474 radians. The exposure time was 5 
seconds, which made the apparent angular velocity of the satellite 0.0095 radians per 
second. With this information, the coefficients became: 

 
A = 1; 
B = 6367.313 km; 
C = 0; and 
D = -4.42946 x 109

 km3. 
 

Note that the only coefficient that changed between the first and second examples 
was the D coefficient. If the second measurement was performed on a different place on 
Earth, the B coefficient would have also changed, depending on the observation latitude. 

 
The three solutions to Equation 11 using the coefficients above were: 

 
1)  788 km; 
2) -6254 km; and 
3) -901 km. 
 

Solutions 2 and 3 are physically impossible; therefore this satellite must have an 
orbit height of approximately 788 km. This result confirms it is higher up than the SL-3 
rocket body’s 597 km height determined in Example 1.



ADDITIONAL MEASUREMENTS 
 

I used this method on all the satellites I captured on that night (Table 1), and two 
future nights (Table 2). I tabulated the results in order of ascending measured orbit height 
to study the error behavior with respect to decreasing streak length. I also used two 
different exposure times, 5 and 10 seconds, to explore error behavior vs. streak length 
and orbit height. These are tabulated in Table 1 and Table 2 respectively. Table 3 was 
created to analyze other sources of error, such as orbit eccentricity and streak location in 
the image (angle from local zenith). 

 
 

ID 
STREAK 
LENGTH 

(pixels) 

STREAK 
LENGTH 

(rads) 

D COEFFICIENT 
( GM / ωp

2
 ) 

HEIGHT 
(km) 

TRUE 
HEIGHT 

(km) 
PERIOD (min) 

TRUE 
PERIOD 

(min) 
12465 177.912900 0.013677 -2.130869E+09 555 547 95.57 95.76 
25527 169.434353 0.013024 -2.349776E+09 582 583 96.01 96.20 
13771 164.878743 0.012673 -2.481590E+09 597 585 96.39 95.95 
27840 123.328829 0.009477 -4.437512E+09 788 788 100.34 100.11 
24968 120.503112 0.009260 -4.648144E+09 805 784 100.76 100.40 
11111 113.216607 0.008700 -5.265847E+09 854 796 101.78 100.45 
27433 105.304321 0.008092 -6.086907E+09 914 871 103.09 102.11 
06154 94.810337 0.007286 -7.508461E+09 1009 953 105.07 104.53 
25963 60.415230 0.004646 -1.846902E+10 1529 1418 116.40 114.08 
25162 58.830264 0.004524 -1.947516E+10 1567 1471 117.21 115.23 
09063 56.859948 0.004373 -2.084474E+10 1616 1499 118.30 115.17 
25746 25.553865 0.001973 -1.024068E+11 3261 3013 156.71 148.48 

 
Table 1: The determined orbit heights of 12 LEO satellites imaged in Ottawa, Ontario on February 11, 

2006. The true height was obtained by using Software Bisque’s TheSky’s satellite orbit 
propagator (see the Software section below). The true period was obtained by taking the 
reciprocal of the mean motion value of the satellites’ orbit elements. The exposure time for each 
of these examples was 5 seconds. Each of the satellites was identified and correlated with the 
help of Software Bisque software (see the Software section below). 

 



ID 
STREAK 
LENGTH 

(pixels) 

STREAK 
LENGTH 

(rads) 

D COEFFICIENT 
( GM / ωp

2
 ) 

HEIGHT 
(km) 

TRUE 
HEIGHT 

(km) 
PERIOD (min) 

TRUE 
PERIOD 

(min) 
28651 317.971697 0.012235 -2.662660E+09 617 625 96.89 97.99 
24966 243.977458 0.009383 -4.527491E+09 795 783 100.55 100.40 
27597 241.238471 0.009277 -4.631089E+09 804 811 100.68 100.98 
27421 234.079047 0.009001 -4.919286E+09 827 831 101.21 101.41 
28051 235.586502 0.009059 -4.856413E+09 827 826 100.56 101.29 
07734 232.038790 0.008923 -5.006343E+09 834 846 101.34 101.54 
28888 198.406149 0.007627 -6.851340E+09 967 958 104.13 97.59 
10731 197.344876 0.007586 -6.925351E+09 971 979 104.32 104.88 
01314 140.174891 0.005386 -1.373795E+10 1335 1304 112.17 111.48 
26083 123.422040 0.004742 -1.772324E+10 1501 1418 115.76 114.08 
25771 122.298814 0.004699 -1.805041E+10 1513 1419 116.07 114.08 
05104 119.104996 0.004576 -1.903177E+10 1550 1430 116.88 113.58 
19195 112.538882 0.004324 -2.131788E+10 1632 1528 118.71 116.05 
24829 98.600203 0.003789 -2.777030E+10 1840 1770 123.29 130.06 

 
Table 2: The determined orbit heights of 14 LEO satellites; 4 imaged in Kemptville, Ontario on May 27 

and 10 imaged in Brockville, Ontario on May 29, 2006. The true height was obtained by using 
Software Bisque’s TheSky’s satellite orbit propagator (see the Software section below). The true 
period was obtained by taking the reciprocal of the mean motion value of the satellites’ orbit 
elements. The exposure time for each of these examples was 10 seconds. Each of the satellites 
was identified and correlated with the help of Software Bisque software (see the Software 
section below). 



ID 
TRUE 

HEIGHT 
(km) 

ORBIT 
ECCENTRICITY 

STREAK LOCATION 
IN IMAGE 

EXPOSURE 
TIME (sec) 

HEIGHT 
ERROR 

(km) 

PERIOD 
ERROR 

(min) 
12465 547 0.0038 Far Left Center 5 8 -0.19 
25527 583 0.00085 Top Left Corner 5 -1 -0.19 
13771 585 0.0034 Left of Center 5 8 0.44 
28651 625 0.0080 Top Left Corner 10 -8 -1.10 
24966 783 0.00025 Top Right 10 12 0.15 
24968 784 0.00025 Far Right Center 5 21 0.36 
27840 788 0.0099 Bottom Right Corner 5 0 0.23 
11111 796 0.0019 Top Left Corner 5 58 1.33 
27597 811 0.000059 Bottom Right 10 -7 -0.30 
28051 826 0.00028 Top Center 10 1 -0.73 
27421 831 0.00013 Bottom Left 10 -4 -0.20 
07734 846 0.0012 Bottom Right 10 -12 -0.20 
27433 871 0.0015 Far Right Center 5 43 0.98 
06154 953 0.0059 Right of Center 5 56 0.54 
28888 958 0.054 Far Right Center 10 9 6.54 
10731 979 0.0025 Center 10 -8 -0.56 
01314 1304 0.0029 Center 10 31 0.69 
25963 1418 0.000067 Top Left Corner 5 111 2.32 
26083 1418 0.00012 Top Center 10 83 1.68 
25771 1419 0.000045 Center 10 94 1.99 
05104 1430 0.0043 Top Left Corner 10 120 3.30 
25162 1471 0.000066 Top Right Corner 5 96 1.98 
09063 1499 0.0061 Left of Center 5 117 3.13 
19195 1528 0.0024 Left of Center 10 104 2.66 
24829 1770 0.082 Bottom Left 10 140 -6.77 
25746 3013 0.024 Bottom Left Corner 5 248 8.23 

 
Table 3: A comparison between the orbit height, orbit eccentricity, streak location in the image and 

exposure time vs. the orbit height error and orbit period error. All the satellites that are listed in 
Table 1 and Table 2 are listed here in the order of their true orbit height at the time of their 
imaging. 

 
 

CONCLUSIONS 
 

It is evident by looking at Table 1 and Table 2 that the smaller the apparent 
angular velocity (streak length) was, the higher the orbit height error became. Note how 
the longer exposure time in Table 2 slightly remedies the height error for a specific range.  

 
The image scale equation that I derived from the SL-3 rocket body image 

(Equation 12) might be a significant source of error. I used angular separations of 50 
pixels and larger to determine it and therefore it might be biased against the smaller 
angular separations, such as the smaller streaks. Solutions to this problem might be to re-
determining the image scale equation using smaller angular separations between stars and 



a larger amount of stars, using a CCD with a higher resolution, and/or increasing the 
exposure time for the lower apparent angular velocity satellites, giving a longer streak. It 
will not matter if the stars streak as well, as the image scale has already been determined 
from the image of the SL-3 rocket body. As long as the apparatus does not change (ST-
9XE CCD with 50mm lens) the image scale should not change appreciably from night to 
night. 

 
Another interesting trend is that the height error is always positive for those 

heights 1000km or larger. This definitely indicates a particular error that is dominating, 
most probably the field scale bias. However, if the field scale was solely determined 
through linear regression, these large errors might have been much worse. Determining 
the field distortions in more depth might be a way of minimizing such a bias. 

 
Table 3 is interesting, yet difficult to analyze. It nevertheless illustrates the many 

factors that can add to the overall height error that will be experienced. For instance, the 
error due to orbit eccentricity seems to be particularly noticeable when the eccentricity is 
0.05 or above, as with the case of #24829 and #28888. This is not surprising, as the 
higher the height becomes, the larger the orbit eccentricity is allowed to be. As Table 3 
also illustrates, the zenith angle of the satellite can also have a noticeable effect. Those 
satellites that appear at the far corners of the image will have a slightly larger height error 
than those nearer the center (zenith). The height equation was derived assuming that the 
satellite was at zenith, so the further from zenith the satellite appears, the larger the error 
will become. In the 11.2 by 11.2 degree field of view used here, satellites can be detected 
as far as 6 degrees from the zenith (at the image corners). 

 
Table 3 effectively illustrates an interesting effect when determining the causes of 

error. The question that should arise after looking at this table should be; “How can these 
errors be isolated, and minimized?” The answer might not be so cut and dry, since, as 
with the case of orbit height vs. eccentricity, one cause of error can directly influence 
another. 

 
No satellite that orbits the Earth has a perfectly circular orbit. Many LEOs 

satellites simply have very low eccentricity orbits, as Table 3 implies. This means that the 
orbit height cannot be constant, and therefore there is still a small radial velocity 
component that is not accounted for. However, the small 5-second exposure times that I 
used would guarantee that the height of the satellites would be generally constant over 
that time. So, the height determined would be the height that the satellite would have at 
that particular time, and does not automatically mean that the satellite is constantly at that 
height. As a result, the determined orbit period might also be larger or smaller than the 
true value. 

 
Increasing the exposure time to over 10 seconds might further improve the height 

determination error, but this can make the imaging more difficult. Note that in order to 
determine the angular velocity of the satellite, both endpoints of the streak had to be 
present and clearly defined. If the exposure time is increased, most of the lowest orbit 



satellites would be able to pass outside the FOV during the exposure time, thereby 
causing a streak with only one (or no) endpoints. 

 
When all is said and done, this method is surprisingly accurate for the lower 

orbiting LEO satellites (200km to 800km orbit heights), and can be made more accurate 
for the higher orbiting LEO satellites (800km to 4000km orbit heights) when required. 

 
 

REFERENCES 
 
AKiTi.ca Cubic Equation Solver 

www.akiti.ca/Quad3Deg.html 
 
Earl, M. “Determining the Range of an Artificial Satellite Using its Observed 

Trigonometric Parallax” JRASC: Vol. 99, No. 2, p. 54 
 
Gupta, R. ed. 2006, Observer’s Handbook, The Royal Astronomical Society of 

Canada (University of Toronto Press: Toronto) 
 

Space Track: The Source for Space Surveillance Data 
www.space-track.org/perl/login.pl (Authorized Account Required) 
 
 

SOFTWARE 
 

“SatSort” Version 2: Satellite TLE Sorting Software: Mike Earl 
 
“TheSky” Level IV, Version 5: Astronomy Software: Software Bisque 
(www.bisque.com) 
 
“CCDSoft” Version 5: CCD Camera Control and Image Analysis Software: 
Software Bisque (www.bisque.com) 
 
 

 
Mr. Michael A. Earl has been an avid amateur astronomer for over 30 years, and 

served the Ottawa RASC as both its Meeting Chair and its Vice President. He currently 
serves as the "Artificial Satellites" Coordinator and the Webmaster for the Ottawa 
Centre’s web site (ottawa.rasc.ca). He constructed the Canadian Automated Small 
Telescope for Orbital Research (CASTOR): the very first remotely controlled and 
automated optical satellite tracking facility in Canada. He is currently working on a 
second-generation CASTOR system geared toward the advanced amateur and 
professional astronomy communities. You are welcome to visit his new CASTOR optical 
satellite tracking web site at www.castor2.ca.

 

http://www.castor2.ca/

	DETERMINING THE ORBIT HEIGHT OF A LOW EARTH ORBITING ARTIFICIAL SATELLITE OBSERVED NEAR THE LOCAL ZENITH

